Kahane–Salem–Zygmund polynomial inequalities via Rademacher processes

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Bernstein Type Inequalities for Complex Polynomial

In this paper, we establish some Bernstein type inequalities for the complex polynomial. Our results constitute generalizations and refinements of some well-known polynomial inequalities.

متن کامل

Polynomial-Time Rademacher Theorem, Porosity and Randomness

The main result of this paper is a polynomial time version of Rademacher’s theorem. We show that if z ∈ R is p-random, then every polynomial time computable Lipschitz function f : R → R is differentiable at z. This is a generalization of the main result of [19]. To prove our main result, we introduce and study a new notion, p-porosity, and prove several results of independent interest. In parti...

متن کامل

Concentration inequalities for Markov processes via coupling

We obtain moment and Gaussian bounds for general Lipschitz functions evaluated along the sample path of a Markov chain. We treat Markov chains on general (possibly unbounded) state spaces via a coupling method. If the first moment of the coupling time exists, then we obtain a variance inequality. If a moment of order 1+ ǫ of the coupling time exists, then depending on the behavior of the statio...

متن کامل

Polynomial Inequalities

Our main result is that every n-dimensional polytope can be described by at most (2n− 1) polynomial inequalities and, moreover, these polynomials can explicitly be constructed. For an n-dimensional pointed polyhedral cone we prove the bound 2n− 2 and for arbitrary polyhedra we get a constructible representation by 2n polynomial inequalities.

متن کامل

extensions of some polynomial inequalities to the polar derivative

توسیع تعدادی از نامساوی های چند جمله ای در مشتق قطبی

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Functional Analysis

سال: 2017

ISSN: 0022-1236

DOI: 10.1016/j.jfa.2017.01.019